

Project 1: Mercedes-Benz Greener Manufacturing Report

By: Kureishi Shivanand

Course: Machine Learning

Date: February 19, 2020

Background

You are required to reduce the time that cars spend on the test bench. Others will work with a dataset

representing different permutations of features in a Mercedes-Benz car to predict the time it takes to pass

testing. Optimal algorithms will contribute to faster testing, resulting in lower carbon dioxide emissions

without reducing Mercedes-Benz’s standards.

Problem Statement

Reduce the time a Mercedes-Benz spends on the test bench

Tasks

Original Datasets

Figure 1.

Figure 2.

Figures 1 displays how train.csv and test.csv that was provided are imported to d_train and d_test,

respectively. Figure 2 gives an indication of how both data frames initially look. The d_train set has 378

variables (including output/target variable: y) and d_test set has 377 variables (since does not include

target variable). Note it is inferred that the sets were pre-split since there are different IDs listed between

d_train and d_test.

Question 1: Remove Zero Variance Variables

Figure 3.

Figure 3 answer Task 1 of removing all zero variance columns. Zero variance essentially means constant

column in which all values in the column are the same [1]. An explanation of the code is given in the

comments. It can be seen that by removing the zero variance variables, d_train now has 12 less variables

and d_test now has 5 less variables.

Question 2: Check for null and unique values for test and train sets

Figure 4.

Figure 5.

Figure 4 shows that there are no null/missing values in the training set (d_train). It also shows the number

of unique variables in the set. Note that since there is a massive number of unique values for the target

value, it is inferred to be continuous. Also note that from X0 – X8, the alphabet is used to represent

categorical values. From X10 – X385, binary values are used to indicate whether the vehicle passes with

the features or not. Similar results are achieved for the testing set (d_test) in Figure 5, excluding the target

variable.

Question 3: Apply label encoder (on both training and testing sets)

Figure 6.

Figure 7.

The label encoder is applied on only non-binary categorical features (X0-X8). This is done since X10-

X385 are already stated in binary number (0/1). The letters used prior to indicate values are replaced with

a corresponding number. This usually makes the model run more efficient since most algorithms used

numbers instead of letters when generating outputs, is required in PCA. Figure 6 shows the label encoder

was applied on both d_train and d_test so the values can be standardized in the model while fitting and

predicting. Figure 7 shows the new values as numbers instead of letters. Note that LabelEncoder was used

instead of OneHotEncoder with dummy variables, since the point is to reduce the current-massive number

of features. Hence a single number representing each unique categorical value is a better choice than a

new variable for each unique value. This is what I thought made the most logical sense.

Question 4: Perform dimensionality reduction (PCA on both training and testing sets)

Figure 8.

Figure 8 demonstrates dimensionality reduction using the PCA technique on the training and testing sets.

Firstly, the features of d_train were assigned to variable d_train_X and the target variable to d_train_Y.

Then PCA was used to reduce the dimensionality of the features of d_train in a way that 95% of the

variance would still be retained. This was similarly done for d_test as well. The dimensions for both

training and testing features were reduced to 6 (drastic reduction compared to before). This would help

immensely in training the models.

Question 5: Predict your test_df (from test.csv) values using XGBoost

Figure 9.

Figure 10.

Figure 9 displays the code that was used to program the model to predict test values. The XGBRegressor

was used since the target variable: y is continuous. Seed is the random state which is used to get

reproducible results. There are 30 estimators (num_trees) used in the ensemble to create a more efficient

model. A linear regression is used as the objective since the model is used to predict a continuous variable

not a categorical or binary one, as mentioned before [2]. Since the training and testing set were already

separated (provided in the assignment), the entire training set is used to train the model, with the

transformed X (d_train_X_transformed) as features and d_train_Y as target. Figure 10 shows the

transformed features from the testing set (d_test_X_transformed) is used to predict output values. The

second output in Figure 10 shows an array of predicted outcomes corresponding to the test features. Note:

the task called for prediction to be done of the test.csv dataset, however since this did not contain a target

variable, the accuracy of the model cannot definitively be determined.

This completes all tasks that were required of the project; however, I feel the accuracy and efficiency of

the model generated still needs to be measured. To do this, I will run some comparative tests in the next

section, ‘Further Insight’, to have a more complete perspective of the generated results.

Further Insight

Figure 11.

Figure 12.

Figure 13.

In order to measure the model accuracy, the target variable needs to be present. The only dataset that was

provided which contains the target variable was train.csv. Hence, this will be used to conduct both

training and testing. The features will be d_train_X_transformed and the target will be d_train_Y. In

Figure 11, cross-validation (K-Fold) is used to training and test on the dataset using 4 folds. The cv()

method is the cross-validation method supported by XGBoost [2]. The DMatrix data structure

(data_matrix) is supported by XGBoost and increases the model efficiency during training [2]. The

data_matrix is assigned to the dtrain parameter. The parameters (params) are given as a dictionary

indicating that linear regression will be used. Number of estimators is same as before (30). To measure

the model accuracy, the RMSE value will be used since the predicted value is continuous and numeric.

The output of the model (cv_result) displays the means of the train and test sets of each fold for 30

rounds. The final mean after boosting of the test set was 10.226. This is not a bad result, however a lower

RMSE may be achieved with manipulating the parameters.

The next test conducted was splitting the d_train set into a train and test set (using train_test_split

module) since this set also contained the target variable. The training contained 80% of the dataset, while

the testing contained 20%. After fitting the original regressor model (Figure 9) with this new set of

training data and predicting on the test features, the RMSE turned out to be 12.769, which is higher than

when using K-Fold cross validation. Hence, it is concluded that to attain a more accurate and efficient

model, cross validation should be used (with XGBoost) rather than the base regressor provided by

XGBoost.

The whole point of the problem statement was trying to find a solution to decrease the time a Mercedes-

Benz vehicle spends on the test bench. To see that the solution achieves this. The system time was

recorded before and after the model was trained with the transformed dataset and the untransformed one

(although this set still had the zero variance columns removed, so the actual time may be a bit higher).

The time to train the transformed data was approximately 0.085 seconds, while the time to trained the

untransformed data was 1.312 seconds. This is a drastic difference and the times recorded may have

something to do with the system. However, the point is there is a clear decrease in the time took

(according to the recorded data, 1/15 of the time). Hence, the overall objective has been definitely

achieved.

Final Remarks and Conclusion

Throughout this project, the original datasets were manipulated multiple times in order to achieve faster

training of the predictor model as well as testing new vehicles for required features. Dimensionality

Reduction provided an immense decrease in features, while still maintain majority of the variance within

the model (95%). The XGBoost ensemble library was used to create a more efficient and accurate model

by using multiple estimators then taking the average of the output, instead of just one. This is proven to

provide a more accurate result as seen above.

In conclusion, the model generated achieves a faster training (as well as testing) of the transformed data,

when compared to the original dataset. Hence, the objective for the project has been achieved and

Mercedes-Benz will be able to spend less time on the test bench.

References:

[1] pandas dataframe remove constant column (February 19, 2020). Stack Overflow. Retrieved from

https://stackoverflow.com/questions/20209600/pandas-dataframe-remove-constant-column

[2] Using XGBoost in Python (February 19, 2020). DataCamp. Retrieved from

https://www.datacamp.com/community/tutorials/xgboost-in-python#apply

https://stackoverflow.com/questions/20209600/pandas-dataframe-remove-constant-column
https://www.datacamp.com/community/tutorials/xgboost-in-python#apply

